导电高分子材料的导电机理
发布时间:2022-02-16 10:30:00 作者:欣圆
导电高分子材料是主链具有共轭主电子体系,可通过掺杂达到导电态,电导率达1000S/cm以上的高分子材料。经过40年的发展,人们对于导电高分子的类型、导电机理以及如何提高其导电率进行了深入的研究,对于导电高分子的合成与应用进行了多方面的探索。由于其***的性能,导电高分子不仅作为导电材料应用广泛,在能源、光电子器件、传感器、分子导线等领域也有着潜在的应用价值。
一、复合型导电高分子材料
复合型导电高分子材料中填料的分散状态决定了材料的导电性,从渗流理论中可看出,孤立分散的填料微粒松散地填充于材料中时,当体积分散达到一定的临界含量以后,就可能形成一个连续的导电通路。这时的离子处于两种状态:一是电荷载流子可以在导体内连续地流动,此时离子间发生的是物理接触;二是由于离子间存在粘接剂薄层,载流子本身被***而运动。所以,复合型导电高分子材料能导电的条件是填充材料应该既一定程度地分散,又能形成松散的网络分布。
复合型导电高分子材料中填充材料的成分、填料粒子的分散状态及其与聚合物基体的相互作用都决定了复合材料的导电性,要想材料能具有更良好导电性,必须使填料粒子既能较好地分散,又能形成三维网状结构或蜂窝状结构。
二、结构性导电高分子材料
离子型导电高分子材料中,像聚醚、聚酯这样的大分子链会形成螺旋体的空间结构,阳离子与其配位络合,并且在大分子链段运动促进下在其螺旋孔道内通过空位进行迁移,或者是被大分子“溶剂化”了的阴阳离子在大分子链的空隙间进行跃迁扩散。
电子型导电高分子材料中,主体高分子聚合物大多数为共轭体系,长链中的π键电子活性较大,尤其是与掺杂剂形成电荷转移络合物之后,很容易就会从轨道上逃逸出来而形成自由电子。大分子链内以及链间的π电子由于轨道重叠交盖可以形成导带,这样就可以为载流子的转移和跃迁提供通道,在外加能量以及大分子链振动的推动下就可以传导电流了。
导电高分子材料分类
导电高分子材料可以通过产生的方式和结构的不同分为复合型材料与结构型材料两类,这两类材料虽然具有较为相似的特性,但是也存在着较大的差别,而且应用的方向和范围也有所不同。
一、复合型导电高分子材料
由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。
二、结构性导电高分子材料
是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小可分为高分子半导体、高分子金属和高分子超导体。按照导电机理分为电子导电高分子材料和离子导电高分子材料。
电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导体的范围。采用掺杂技术可使这类材料的导电性能大大提高。如在聚***中掺杂少量碘,电导率可提高12个数量级,成为“高分子金属”。经掺杂后的聚氮化硫,在超低温下可转变成高分子超导体。
结构型导电高分子材料用于试制轻质塑料蓄电池、太阳能电池、传感器件、微波吸收材料以及试制半导体元器件等。但目前这类材料由于还存在稳定性差(特别是掺杂后的材料在空气中的氧化稳定性差)以及加工成型性、机械性能方面的问题,尚未进入实用阶段。
免责声明:以上信息由会员自行提供,内容的真实性、准确性和合法性由发布会员负责,天助网对此不承担任何责任。天助网不涉及用户间因交易而产生的法律关系及法律纠纷,
纠纷由您自行协商解决。
风险提醒:本网站仅作为用户寻找交易对象,就货物和服务的交易进行协商,以及获取各类与贸易相关的服务信息的平台。为避免产生购买风险,建议您在购买相关产品前务必
确认供应商资质及产品质量。过低的价格、夸张的描述、私人银行账户等都有可能是虚假信息,请采购商谨慎对待,谨防欺诈,对于任何付款行为请您慎重抉择!如您遇到欺诈
等不诚信行为,请您立即与天助网联系,如查证属实,天助网会对该企业商铺做注销处理,但天助网不对您因此造成的损失承担责任!
联系:tousu@tz1288.com是处理侵权投诉的专用邮箱,在您的合法权益受到侵害时,欢迎您向该邮箱发送邮件,我们会在3个工作日内给您答复,感谢您对我们的关注与支持!